Post Thumb

Stanford Researchers 'Trick' Human Stem Cells To Regenerate Faster

Share it

In Brief Researchers at the Stanford University School of Medicine found a way to trick human embryonic stem cells to become pure populations of any of 12 cell types, including bone, heart muscle and cartilage within days.

Scientists at the Stanford University School of Medicine have identified the sets of biological and chemical signals necessary to quickly and efficiently direct human embryonic stem cells.

If successful, researchers could grow pure populations of any of 12 cell types, including bone, heart muscle and cartilage within days rather than the weeks or months previously required.

This is key toward clinically useful regenerative medicine – potentially allowing researchers to generate new beating heart cells to repair damage after a heart attack or to create cartilage or bone to reinvigorate creaky joints or heal from trauma.

Researchers found that the quickest, most efficient way to micromanage the cells’ developmental decisions was to apply a simultaneous combination of factors that both encouraged the differentiation into one lineage while also actively blocking the cells from a different fate – a kind of “Yes” and “No” strategy.

“We learned during this process that it is equally important to understand how unwanted cell types develop and find a way to block that process while encouraging the developmental path we do want,” said researcher Kyle Loh.

By carefully guiding the cells’ choices at each fork in the road, scientists were able to generate bone cell precursors that formed human bone when transplanted into laboratory mice and beating heart muscle cells, as well as 10 other mesodermal-derived cell lineages.

read more...

Article originally posted at futurism.com

Post Author: Carla Parsons

Leave a Reply

Your email address will not be published. Required fields are marked *